NAME: USEN SAMUEL
MATRIC NO: 22/0610
DEPARTMENT: INFORMATION TECHNOLOGY
[bookmark: _GoBack]COURSE CODE:IFT202
		

What is the Agile Model

The Agile model is a way to manage and work on projects especially in software development It focuses on being flexible and responsive to changes It’s about breaking a project down into smaller parts and working on these parts in short cycles called sprints which usually last from one to four weeks

How the Agile Model Works
Imagine you’re building a house Instead of planning every detail from start to finish before you lay the first brick you plan in smaller chunks You start with the foundation get feedback make adjustments then move on to the walls and so on The Agile model works similarly

-Sprints: These are short repeatable work cycles where a specific set of features or tasks are completed At the end of each sprint you have something tangible to show like a small piece of working software

-Daily Standups: These are short daily meetings where everyone on the team shares what they did yesterday what they plan to do today and if they’re facing any problems It helps everyone stay in sync and identify issues early

- User Stories: Instead of long complicated documents you write simple descriptions of features from the perspective of the end user For example As a user I want to log in to my account so I can access my dashboard These stories guide what gets built in each sprint

-Backlog: This is a prioritized list of all the things that need to be done in the project It’s constantly updated as priorities change and new insights are gained

-Iteration: After each sprint you review what was built gather feedback and make necessary adjustments Then you plan the next sprint This cycle repeats until the project is complete

 Benefits of the Agile Model

-Flexibility: Since you’re working in short cycles and constantly reviewing progress it’s easier to adapt to changes If a new requirement comes up or if something isn’t working as expected you can adjust your plans in the next sprint

-Customer Involvement: Customers or stakeholders are involved throughout the process They see regular updates and can provide feedback ensuring the final product meets their needs

-Continuous Improvement: Each sprint is an opportunity to learn and improve You’re not just delivering a product you’re refining your process as well

-Reduced Risk: Because you’re getting regular feedback and making adjustments along the way there’s less risk of ending up with a product that doesn’t meet user needs or has significant issues

Agile Mindset
Agile isn’t just a process it’s a mindset It’s about being open to change valuing collaboration over strict processes and focusing on delivering value to the customer Teams working in Agile environments are often more empowered and engaged because they have more control over their work and can see the impact of their efforts more quickly


 In Summary
The Agile model is a way of working that breaks projects into smaller manageable pieces involves regular feedback and adaptation and focuses on delivering value to the customer throughout the process It’s about staying flexible collaborating closely and continuously improving both the product and the way you work







[image: download]







The Waterfall Model


The Waterfall model is a traditional software development methodology that follows a sequential, linear approach to the software development life cycle. It is called the "waterfall" model because the process flows downward through the distinct phases, much like a waterfall. The key phases of the Waterfall model are requirements gathering and analysis, design, implementation, testing, deployment, and maintenance.

The requirements gathering and analysis phase involves determining the software's functional and non-functional requirements and analyzing and documenting them in detail. The design phase translates the requirements into a detailed design for the software system, specifying the overall system architecture, data structures, and other high-level design elements. The implementation phase involves developing the software based on the detailed design, writing the source code, and unit testing the individual components.

The testing phase includes integration testing to ensure the components work together as expected, system testing to verify the software meets the original requirements, and acceptance testing with the customer or client. The deployment phase involves packaging the software and deploying it to the production environment, as well as providing training and documentation to the end-users. Finally, the maintenance phase provides ongoing support and bug fixes for the deployed software, along with implementing any necessary enhancements or changes requested by the customer.

The key characteristics of the Waterfall model are its linear and sequential flow through the phases, a strict phase-gate approach where one phase must be completed before moving to the next, extensive documentation required at each phase, limited flexibility to accommodate changes during the development process, and suitability for projects with well-defined and stable requirements. While the Waterfall model is often criticized for its inflexibility, it can be effective for projects with clear, well-understood requirements and a stable development environment, such as safety-critical systems where a structured and disciplined approach is required.




[image: download]










The Prototyping Model



The Prototyping Model is a software development methodology that focuses on creating early, working versions of a system or application to gather feedback and refine requirements. Unlike the linear Waterfall model, the Prototyping Model is an iterative and incremental approach to software development. The key phases of the Prototyping Model are identifying basic requirements, developing an initial prototype, reviewing and refining the prototype, and implementing the final system.

In the initial phase, the basic requirements are gathered from the customer or stakeholders to understand the high-level functionality and features needed. The next phase involves quickly building a working model or prototype of the system, which may focus on specific features or the overall user experience. The prototype is then presented to the customer or end-users, and feedback is obtained on the functionality, usability, and overall design. Based on this feedback, the prototype is revised and enhanced, and the review and refinement process is repeated until the prototype meets the customer's expectations.

Once the prototype is approved, it is used as a basis to develop the final, production-ready system. This may involve rewriting or restructuring the code to ensure scalability and maintainability. The key characteristics of the Prototyping Model include the emphasis on early and iterative development of working prototypes, flexibility and adaptability to changing requirements, active customer/user involvement throughout the process, and the ability to experiment and explore different design alternatives. The Prototyping Model is particularly useful for software projects where the requirements are not well-defined, or where user feedback is crucial for shaping the final product.

Some common technologies and tools used in the Prototyping Model include rapid prototyping tools, wireframing and mockup tools, low-code or no-code development platforms, and user testing and feedback tools. The Prototyping Model can be combined with other software development methodologies, such as Agile, to create a more comprehensive and flexible approach to software development.










[image: download (1)]



The Spiral Model:
The Spiral Model is an iterative software development methodology that combines elements of the Waterfall and Prototyping models. It is characterized by a cyclic approach to software development, where each cycle involves a progression through four key phases: determining objectives, alternatives, and constraints; evaluating alternatives and identifying/resolving risks; developing and verifying the next iteration; and planning the next iteration.

In the first phase, the specific objectives for the current cycle are identified based on the overall project goals, and alternative approaches and strategies for achieving those objectives are evaluated. The potential constraints and risks associated with the proposed alternatives are also determined. The second phase involves analyzing the feasibility and viability of the proposed alternatives, identifying and assessing the potential risks, and developing plans to mitigate or resolve the identified risks.

The third phase focuses on developing and verifying the next iteration or prototype of the software, based on the selected alternative. The functionality and quality of the developed software are verified through testing and validation. Finally, the fourth phase involves evaluating the results of the current iteration, gathering feedback from stakeholders, and planning the objectives, activities, and resource requirements for the next iteration of the software development cycle.

The key characteristics of the Spiral Model include its iterative and incremental development, with each cycle building on the previous one, its risk-driven approach where risk analysis and mitigation are central to the process, and the integration of prototyping and user feedback into the development cycle. The Spiral Model is suitable for large, complex, and high-risk software projects with evolving requirements, and it is often used in combination with other methodologies, such as Agile, to create a more comprehensive and flexible approach to software development.
[image: download (2)]





The V-Model:

The V-Model is a software development lifecycle model that emphasizes the importance of testing and validation throughout the process. It mirrors the development phases with corresponding verification and validation activities, ensuring that the software meets the original requirements and is thoroughly tested.

The key phases of the V-Model include requirements analysis, system design, unit testing, integration testing, system testing, and acceptance testing. In the requirements analysis phase, the functional and non-functional requirements of the software are defined and documented in detail. The system design phase involves translating these requirements into a detailed design, specifying the software architecture, data structures, and other high-level design elements.

The unit testing phase focuses on verifying the individual components or modules of the software, ensuring that they function as expected. Integration testing then checks how these components work together as a whole system. System testing is performed to verify that the entire software system meets the original requirements, while acceptance testing is conducted with the customer or client to ensure the software is ready for deployment.

The V-Model emphasizes the importance of having a clear understanding of the requirements and a well-defined design before proceeding with the implementation and testing phases. This structured approach helps to ensure that the software is thoroughly tested and validated throughout the development process, reducing the risk of defects or issues in the final product.

The key characteristics of the V-Model include its focus on testing and validation, the mirroring of development phases with corresponding verification activities, and its suitability for projects with well-defined requirements and a need for a structured, disciplined approach to software development. While the V-Model may be less flexible than some agile methodologies, it can be an effective choice for projects where quality assurance and compliance with requirements are of paramount importance, such as in safety-critical or highly regulated industries.


[image: download (1)]





image5.png
V-Model
Developersie cyce

Testers it e





image1.png




image2.jpeg




image3.jpeg




image4.png




